Code No: 156CV

R18 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year II Semester Examinations, February/March - 2022 SIGNALS AND SYSTEMS (Electrical and Electronics Engineering) Max. Marks: 75

Time: 3 Hours

Answer any five questions All questions carry equal marks

- 1.a) Explain orthogonality property between two complex functions $f_1(t)$ and $f_2(t)$ for a real variable t.
- Explain the classification of signals and systems. b) [8+7]

[7+8]

- 2.a) Define and derive the expression for evaluating mean square errors.
- Check the following system is linear or non-linear. b)

i)
$$y(t) = |x(t)|$$
 ii) $y(n) = 2x(n)$

- Derive the following properties of Fourier series. 3.a) i) Linearity b) Time shifting
 - Find the Fourier transform of the signal $x(t) = e^{-t} \sin 5tu(t)$ **b**) [8+7]
- Determine the exponential Fourier series representation for the full wave rectified sine 4.a) wave shown in Figure.

- State and providing shifting and frequency shifting properties of Fourier transform. **b**) [8+7]
- 5.a) Find the transfer function of the system governed by the following impulse response. $h(t) = u(t) + 0.5e^{-6t}u(t) + 0.2e^{-3t}\cos u(t).$
 - Perform the convolution between $x(t) = e^{-2t}u(t)$ and h(t) = u(t+2). **b**) [8+7]
- Show that the response of an LTI system is convolution integral of its impulse 6.a) Response with input signal?
 - Calculate x(n) * h(n) using graphical method. Where $x(n) = \{1, -2, -1\}$ and h(n) =**b**) {1, 2, 1, 2} [8+7]
- Find the Inverse Laplace Transform of $X(s) = \frac{2}{(s+2)(s+3)}$, $ROC: -3 < Re\{s\} < -2$ 7.a)
 - Determine the Z-transform and sketch the pole zero plot with the ROC for the b) following Signal: $x(n) = 2(5/6)^n u(-n-1) + 3(1/2)^{2n} u[n]$. [8+7]
- 8.a) Discuss about the Impulse sampling in detail.
- **b**) Write short notes on the Relation between Convolution and Correlation. [7+8]

---00000----

Download all NOTES and PAPERS at StudentSuvidha.com